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Based on experimental data and numerical modeling, it is shown that a lamina of melted metal 
of thickness of order 0.01d, in which the temperature is close to the melting point of the particle 
material, can be formed upon high-speed impact (vo .~ 500-1200 m/sec) of a fine metal particle 
(d = 1-50 pro) on a rigid undeformable barrier near the contact surface. 

The formation of a coating in a flow of a "cold" high-speed jet  toward the barrier finds increasing 
application to gas-dynamic spraying technologies [1, 2]. However, the nature of interaction between a barrier 
and metal particles having the velocity v0 ~ 500-1200 m/sec  and a temperature  much less than the melting 
point of the particle material is not clear. It is difficult to s tudy this phenomenon because of, in particular, 
the small particle sizes (d ~ 10 -6 m), the short period of interaction (r  ~ 10 -8 sec), the uncertain phase 
state  of interacting objects in microvolumes near the contact  boundaries, etc. 

In the present study, based on experimental da ta  and numerical modeling, we consider the possibility 
of forming a thin melted layer in the neighborhood of contact upon impact of a separate particle on a rigid 
barrier. 

In [1, 2], the following specific feature was established: the formation of a coating is possible when 
the kinetic energy of a particle is a factor of 1/3 greater than the magnitude of the thermal energy, which 
corresponds to the melting point, irrespective of the particle material. 

In addition, an analysis of the particles at tached to a polished substrate after the impact,  which was 
performed by the methods of electronic and optical microscopy, has allowed us to reveal the characteristic 
features of their deformation. Figure i shows microphotographs of aluminum particles on the copper surface. 
One can see that  corona-shaped ejections of metal are formed at the final stage of plastic deformation at 
the periphery of contact. They most probably appear  as a result of the formation of a high-speed radial jet  
of metal, which is similar to a cumulative jet, at the wall. The  main role here is played by the processes 
which occur near the contact, where deformation is intense and the mechanical energy converts to thermal 
energy. In these conditions, a thin melted layer of metal can be formed in the neighborhood of the wall. The  
formation of this layer depends on the ratio of heat generation to heat removal. 

The impact of an aluminum particle of diameter  d = 2R = 50 #m on a rigid barrier at the initial 
velocity v0 = 800 m/sec and tempera ture  To = 300 K was modeled numerically. The program complex 
KRUG24, whose algorithm is based on the Lagrangian approach and the Prandt l -Reuss  mathematical  model 
of an elastoplastic material in flow, was used. The  main differences of the algorithm used for calculating the 
dynamic problems of continuum mechanics from known approaches are given in [3, 4]. 

The  problem posed was solved as follows. The computat ional  domain was covered by a difference grid 
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consisting of tr iangular cells whose mass was set at the initial moment  and was kept during the calculation. 

The  equations of" conservation and the governing relations of the mathemat ica l  model of a medium were 
integrated numerically by steps in time; the lat ter  were chosen from the Courant  stability condition. The 

velocities and coordinates were determined in the grid nodes, and the current flow density and pressure, the 
specific internal energT, and the components of the deviatoric stress tensor were determined at the geometric 

centers of the cells. Thus,  the stress-strain s tate  in the entire domain was completely calculated at each t ime 

step. The  treat redistribution owing to the thermal  conduction was not taken into account. 
In the literature, there are no da ta  on the characteristics of a microparticle material  tha t  determine 

its s t rength properties. For example, Kudinov et al. [5] proposed to choose a dynamic particle hardness a 
factor of 1.5 greater  than their static hardness. In our  method of solution, the dynamic yield point, which was 
considered constant  during deformation, was used as a major  s trength characteristic of the material .  Previous 

studies of a high-speed impact  of various macrobodies  on barriers have shown tha t  this mathemat ica l  model 
allows one to solve a broad range of dynamic problems; we note tha t  the results are in satisfactory agreement  

with known experimental  data  [4]. 
The  above-mentioned experiments on the interaction of a luminum particles with a polished substra te  

at their small concentrat ion have allowed one to determine the characteristic particle strain, in particular,  

the ratio of the finite height of a particle to its initial diameter.  At velocities of approximately 800 m/sec,  

this ratio is equal to about  0.25. In this case, the subs t ra te  does not undergo noticeable deformation. With  
account of this fact, in numerical calculations the barrier  was assumed to be a rigid wall. The  condition of 

nonpenetra t ion and slip with friction taken into account and ignored was used as a boundary  condition. 

The  calculation results were compared with the experimental  finite particle strain data; this has allowed 
us to choose a dynamic yield point equal to Y -- 450 MPa,  which gives results tha t  are the closest to the 

exper imental  ones. This dynamic yield point was used in all subsequent calculations. 
Figures 2 and 3 show calculation results obta ined under frictionless boundary  condition. Figure 2 

shows the distr ibution of the radial velocity component  u over the particle height at the moment  t = 20- 10 -9 

in three sections relative to the radial coordinate (a) and the particle contour for t = 0 and 20 nsec (b). 
I t  is natural  tha t  the greatest  velocity is observed at the most distant point on the radius. In addition, in 

approaching the barrier, the velocity increases in each section and reaches the max imum values in the layer 

adjacent to the barrier  (the layer thickness is approximate ly  0.05 d). Figure 3 shows the distributions of the 
radial velocity component  over the radius at various moments  in the near-wall cells. At the early stage of 
impact ,  the radius of the contact surface is smaller than  R (for t -- 10- 10 -9 sec, it becomes equal to R), and 
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the maximum velocity is approximately twice as large as the impact velocity v0. After that ,  the radius of 
the contact surface is increased as a result of particle-material spread over the barrier and, as a consequence, 
the end point of this surface is decelerated because of the radial expansion and resistance of the material to 

shear strains. 
We also calculated the distribution of the specific internal energy e in the cells of the difference grid 

in a layer of thickness 1/~m at the barrier. The  internal-energy increment is equal to the shear-stress work 
upon corresponding plastic deformations. The  tempera ture  of the particle material was estimated under the 
assumption that  the formula e = c~T is applicable (Cv = const). Near the wall, the tempera ture  rise in 

comparison with the initial temperature  is A T  ~ 600 K. 
Thus, the numerical modeling confirmed the assumption that  there is a high-speed near-walt flow of 

metal  in the radial direction (see Fig. 2). At some moments of t ime (under the ideal-slip condition at the 
wall), the velocity in the near-wall flow is a factor of 2 greater than the impact velocity at certain points. 
This flow occurs because of pulse-pressure unloading after the shock wave leaves the contact site and can lead 
to ejections of thin films of the particle material  over the periphery of contact (see Fig. 1). 

The  calculations performed with allowance for the Coulomb friction law (the friction coefficient was 
specified) have shown that  friction at the wall leads to an insignificant decrease in the finite strain. From 
the viewpoint of the physics of this process, the no-slip conditions, which result in the formation of a thin 
boundary  layer, can be used as boundary conditions; to describe this layer, it is necessary to change greatly 
the physicomathematical  model: to take into account the heat transfer and the possibility of metal melting 
and to determine friction in the melted layer by the Stokes law; in addition, the computat ional  cells in the 

near-wall region should be refined. 
With allowance for the aforesaid, we chose an approximate scheme of formation of a layer of melted 

metal  on the basis of the classical friction and heat-transfer laws and integral methods for a boundary  layer. 
It  is shown below that  melting can occur; this justifies the use of the ideal-slip condition adopted above. 
We now consider the balance of heat generation and heat removal at the wall with allowance for the results 

obtained for particle deformation as a whole. 
It  is noteworthy that  for a flow of melted metal  along the wall, the thickness of the tempera ture  layer 

5T generally exceeds the thickness of the viscous boundary  layer, because the Prandt l  number Pr  is small. In 
our case, the thickness of the melted layer (~H c a n  be greater than  or equal to the viscous-layer thickness 6p. 
We determine the conditions under which each of these cases is possible. 

If (~H :> (~p for arbi trary r,  as in an incompressible viscous liquid, a viscous boundary  layer develops 
in the neighborhood of the critical point in an axisymmetric flow of the layer toward the wall, because, in 
our problem, the flow rate for z = 0 is a linear function of the radius (see Fig. 3): ur = a t ,  where ur is 
a velocity at the layer boundary equal to the velocity at the wall obtained upon numerical strain modeling 
of the entire particle and r is the distance from the axis of symmetry  of the spherical particle. As one can 
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see from Fig. 3, the constant a is t ime-dependent;  however, one can ignore the nonstat ionary character by 

considering the quasistat ionary boundary conditions for approximate  est imates to use the exact solution of 

the Navier-Stokes equations for a similar problem [6]. The  exact solution gives 

6. = 2 (1) 

where # is the dynamic viscosity and p is the density. 
Hereinafter,  the parameter  a is es t imated as follows: 

a = u R / n .  (2) 

Here uR is the velocity at  the layer boundary  for r = R = d/2. 
The viscosity of liquid metals near the melt ing point is approximated by the formula p = (Tmelt/T) • 

2.75 �9 10 -3 P a .  sec. We now show tha t  Tmelt/T is a little less than  unity; therefore, we assume that  

# ~ 2.5 �9 10 -3 P a -  sec. 

According to the strain calculations for a particle of d = 50 #m,  the characteristic value of the velocity 

uR for v0 = 800 m/sec  is uR ~ 1500 m/sec.  From (1) and (2), we find 

where Re -- RuRp/p is the Reynolds number.  Subst i tut ing the parameters  for an aluminum particle into this 
formula, we obtain Re = 0.405 �9 105 and, hence, 5**/R = 0 .86 .10  -2 ~ 0.01. 

Thus,  the assumption of the small thickness 5p and the correctness of the separation of the problems 

for an external  flow and a boundary  layer are supported.  
To est imate the thickness of the melted layer 6H in the case where 5H > 5~,, we now consider the heat 

balance in the near-boundary zone in the integral approximation:  

6H 6~ 

d / 2 : r r u p H d z ~ 2 7 r r d r /  /O,u\2 (3) 

0 0 

Here H is the specific heat  of melting (H  ~ 400.103 J / k g  for aluminum) and #(Ou/Oz) 2 is the volume source 

of heat generated by viscous friction. The  left side of (3) is the increment of the heat flux over r through 
a cylindrical surface of radius r which is taken away by the melted metal  in the form of the latent heat of 

melting. 
I t  is necessary to note tha t  Eq. (3) does not make allowance for additional heating after melting and 

the heat t ransfer  beyond the upper and lower boundaries of the layer 5H. 
Vqe assume that  the velocity profiles in the viscous boundary  layer correspond to the distribution in a 

laminar  flow. Then, 

6H 6~ 
?2r 2 

0 0 

With  allowance for the adopted approximations,  after simple t ransformations we obtain r(dhH/dr) = 
5.u~/(4H) - 25H. 

Taking into account that,  in the above case, the quant i ty  5~ does not depend on r [see Eq. (1)], one 

can write the resulting equation in the form 

r d(hH/5,) __ U2r 2 5 g  

dr 4H 5, 

We now consider the sign of the derivative at the point where ~H = 8~- If  the derivative is positive 
(u~ ~> 8H),  the thickness of the melted layer grows on r more rapidly than  the thickness of the viscous layer. 

For aluminum, we have H = 400.103 J / k g  and ur ~> 1800 m/sec; this corresponds to v0 >/1000 m/sec.  

We consider the case v0 ~< 1000 m/sec  where 6H = 5, = 8. The velocity profile in the boundary  layer 
is assumed to be linear. The  integral balance of the heat generated and carried away has the following form: 

191 



d(0.55 - 27rru~pH) ~ 5# 2Trr dr. 

After appropriate transformations, we obtain 

2 r  d--r + - R e g "  

The expression 5/r = 2V~uR/v/-R~H satisfies this equation. It is clear that,  for 5T = 5 u = 5, the thickness 
of the boundary layer 5 increases proportionally to r. In our case, we have (5/r)~=n ~ 0.96.10 -2. For r = R, 
we obtain 5 ~ 0.24 #m. 

Let us estimate the temperature of the boundary layer. The heat taken away by the melted metal 
from the control volume bounded by a cylindrical surface of radius r is calculated by the formula 

u2 pH 7rr 3 
Q = 0.55"u~. 27rrpH = ~ R (4) 

If the wall is heat-insulated, the heat flux toward the upper bound of the layer, where melting occurs, 
is determined as follows: 

dQ AT 
q = d--5 5 / 2 '  (5) 

where S = 7rr:, A = #cp/Pr is the thermal conductivity, ep is the specific heat, Pr is the Prandt l  number, 
AT = T - Ymelt, and T is the average temperature of the boundary layer. From (4) and (5), we obtain 

2. 
A T ~  cv 

For r = R, the estimate for liquid aluminum [Cp = 1084 J /  (kg- K) and Pr = 0.037] gives AT = 38 K. 
This result supports the validity of the use of the assumption that  the metal in the boundary layer is 
superheated insignificantly. 

Making allowance for heat removal from the boundary layer to the wall, metal superheating in the 
layer, and metal heating outside the layer to the melting point give even smaller values of the thickness 5; 
therefore, the resulting estimates cannot be regarded as upper estimates. 

Our analysis shows that  upon impact of a fine metal particle on a rigid undeformable barrier near the 
surface, a lamina of melted metal of thickness 5 < 0.015d, in which the temperature is close to the melting 
point of the particle metal, can form. The formation of this layer explains the phenomenon of high adhesion 
of particles with a substrate upon gas-dynamic spraying. 
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